
Jun-Yan Zhu
16-726, Spring 2023

3D-aware Synthesis (part II)

© EG3D [Chan et al., 2022]Many slides from Eric Chan

NeRF (neural radiance fields):
Neural networks as a volume representation,

using volume rendering to do view
synthesis.(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) → color, opacity

2 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Representing a scene as a continuous 5D function

3

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

{ {
Spatial
location

Viewing
direction

Fully-connected
neural network

9 layers,
256 channels

Output
color

{

Output
density

{

3 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

4

Generate views with traditional volume rendering

Ω

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

5

Rendering model for ray r(t) = o + td:

3D volume

𝑡!

Camera

Ray

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

6

Rendering model for ray r(t) = o + td:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

7

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: 3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

8

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

Sigma parametrization for continuous opacity

9

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

9 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Effective resolution is tied to distance between samples

10

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

10

sample distance

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Volume rendering is trivially differentiable

11

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

11

differentiable w.r.t.

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

12

Optimize with gradient descent on rendering loss

𝑚𝑖𝑛
!
∑
"
∥ render(")(𝐹!) − 𝐼%&

(") ∥'

Ω

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Training network to reproduce all input views of the scene

13 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Positional encoding: high frequency embedding of input coordinates

14

(𝐱) (𝐜)

(𝐜)...

sin(𝐱), cos(𝐱)
sin(2𝐱), cos(2𝐱)
sin(4𝐱), cos(4𝐱)

sin(2!𝐱), cos(2!𝐱)

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

15

Sh
al

lo
w

 n
et

w
or

k
(2

 la
ye

rs
)

D
ee

p
ne

tw
or

k
(8

 la
ye

rs
)

Simple trick enables network to memorize images

Standard fully-connected net With “embedding”Ground truth image

15 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Positional encoding also directly improves our scene representation!

16

NeRF (Naive) NeRF (with positional encoding)

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Implementation Details

Camera Locations and Poses
• Use Structure from Motion (e.g., COLMAP) to initialize camera poses
• Incorrect camera poses lead to bad results
• Joint optimization of camera poses and scene presentation.

Photo credit: https://colmap.github.io/

https://colmap.github.io/

Implementation Details
Training and inference speed:
• Original NeRF is quite slow.
• Faster training and inference is an active research topic.
• Optimized CUDA kernel for small MLP network (10x faster)
• Efficient data structure: multi-resolution hashing (10+ faster)

Instant Neural Graphics Primitives [Müller et al.,]

Toward 3D-aware Generative Models

19

3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

3D Convolutional Layers

Photo credit: Shiva Verma

Easy to implement:
- Replace 2D by 3D in your code

e.g., Conv2D -> Conv3D
ConvTranspose2d->ConvTranspose3d
MaxPool2d -> MaxPool3d

3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

How to add Color and Texture?

24

2D image

textureshape viewpoint

Learning 3D Disentanglement

texture code

2D image

texture network

shape code

shape network

3D shape

Real/fake shape Real/fake image

2.5D sketch

differentiable projection

viewpoint

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]

Learning 3D Disentanglement

samples from 2D GANs

our 3D, 2.5D, and 2D output

viewpoint

texture

3D disentanglement

shape

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]

3D

2D

3D

2D

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]

viewpoint

texture

Editing viewpoint, shape, and texture

shape

Example-based texture transfer

Image
Shape

Interpolation in the latent space

Shape

Texture

Both

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]

Limitations:
1. Voxel representation is expensive.
2. Requires ground truth 3D data.

30

Volumetric 3D

Eachgrid cell stores information (e.g.,occupancy, color)

Verygeneralbut memory-intensive

256x256x256 -> 1024x1024x1024

Cannot even fit a single training data to GPU

Slide credit: Shubham Tulsiani

Improvements:
1. Using implicit representation (network-based)

32

Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Explicit function:
𝑦 = 2𝑥. (y = f x)

Implicit function:
2𝑦 − 4𝑥 = 0, 𝐹 𝑥, 𝑦 = 0

A set of zeros of a function of
two variables.

Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

DeepSDF preserve details and render visually pleasing results compared to
voxel-based methods.

Deep SDF

Improvements:
1. Using implicit representation (network-based)
2. Learning from image collections

37

HoloGAN

Representation: 3D feature representation
Training: Adversarial loss + latent code reconstruction
Modulation: AdaIN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

HoloGAN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

Limitations:
- Do not synthesize geometric outputs (e.g., voxels, SDF).
- No explicit viewpoint consistency. (same issue with Visual Object Networks)

NeRF + GANs
(Neural rendering + Generative Models)

40

GRAF: Generative Radiance Fields

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

GRAF: Generative Radiance Fields

• NeRF Generator is conditioned on both shape and appearance code.
• Patch-based Discriminator (full-image discriminator is too slow)

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

GRAF: Generative Radiance Fields

Multi-scale ray sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

Training a 3D-Aware GAN

3D-Aware GAN Training Steps

1. Generate a representation of a scene

2. Render the scene from a random camera pose

3. Feed the image to a 2D discriminator

4. Backpropagate through the discriminator and differentiable rendering

DiscriminatorGeneratorNoise “Realness”

Feed the image to the discriminatorGenerate a scene Render a 2D Image

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan

𝜋-GAN

Mapping network + AdaIN (FILM) + learnable positional encoding

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

Focal Length Latent InterpolationCamera Position

𝜋-GAN

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan

𝜋-GAN

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan

𝜋-GAN

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan

Advanced Architectures: StyleNeRF

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]
Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], …

Baseline architecture Proposed architecture
rendering features via volumetric rendering + GANs-based upsampler

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]

Advanced Architectures: EG3D (StyleNeRF+Triplane)

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]
Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], …

Rendering features
via volumetric rendering

Generate final output
via image encoder

Tri-plane representation
for speed-up

F(x, y, x) -> F(x, y) + F(x, z) + F(y, z) features are useful for upsampling If the model is too slow,
use GAN-based upsampler

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]

Object Editing
with Generative NeRFs

53

position density

radianceview direction

Neural Radiance Fields Base Architecture

NeRF [Mildenhall et al., 2020]

density

radianceview direction

position
shape code

color code

GRAF [Schwarz et al., 2020]

Generative Neural Radiance Fields

position

shape code
density

radianceview direction

color code

+shared

instance

Editing Conditional Radiance Fields [Liu et al., 2021]

Generative Neural Radiance Fields (with shared geometry branch)

Editing Conditional Radiance Fields [Liu et al., 2021]

Which parameters
do we change?

+position

shape code
view direction

density

radiance
color code

Editing Conditional Radiance Fields [Liu et al., 2021]

+position

shape code
view direction

density

radiance
color code

Updated for Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]

+position

shape code
view direction

density

radiance
color code

Updated for Color Editing

Updated for Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]

Color Editing

Input User Scribble Output Edited Views

Editing Conditional Radiance Fields [Liu et al., 2021]

Shape Editing

Input User Scribble Output Edited Views

Editing Conditional Radiance Fields [Liu et al., 2021]

Input User Scribble Output Edited Views

Color Editing

Editing Conditional Radiance Fields [Liu et al., 2021]

Input User Scribble Output Edited Views

Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]

Text-based Editing
with Generative NeRFs

66

Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

a DSLR photo of a squirrel

wearing a purple hoodie

reading a book

Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Add noise and denoise using a pre-trained Stable Diffusion model
Step 3. Update NeRF parameters with the gradient (difference between added and predicted noises)

Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Use InstructPix2Pix to produce output images
Step 3. Update NeRF parameters with generated result from Step 2

InstructPix2pix: image-conditional diffusion model (https://www.timothybrooks.com/instruct-pix2pix/)

https://www.timothybrooks.com/instruct-pix2pix/

Thank You!
https://learning-image-synthesis.github.io/

