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3D-aware Synthesis (part II)

© EG3D  [Chan et al., 2022]Many slides from Eric Chan



NeRF (neural radiance fields):
Neural networks as a volume representation, 

using volume rendering to do view 
synthesis.(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) → color, opacity

2 Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Representing a scene as a continuous 5D function
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Generate views with traditional volume rendering
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Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

3D volume
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Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

3D volume
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Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: 3D volume
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Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
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Sigma parametrization for continuous opacity
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
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Effective resolution is tied to distance between samples
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
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sample distance

Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Volume rendering is trivially differentiable
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
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differentiable w.r.t.

Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 
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Optimize with gradient descent on rendering loss
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Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Training network to reproduce all input views of the scene

13 Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Positional encoding: high frequency embedding of input coordinates
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Simple trick enables network to memorize images 

Standard fully-connected net With “embedding”Ground truth image

15 Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Positional encoding also directly improves our scene representation!

16

NeRF (Naive) NeRF (with positional encoding)

Slides credit: Ben Mildenhall, Pratul Srinivasan et al., 



Implementation Details

Camera Locations and Poses
• Use Structure from Motion (e.g., COLMAP) to initialize camera poses
• Incorrect camera poses lead to bad results
• Joint optimization of camera poses and scene presentation.

Photo credit: https://colmap.github.io/

https://colmap.github.io/


Implementation Details
Training and inference speed: 
• Original NeRF is quite slow. 
• Faster training and inference is an active research topic.
• Optimized CUDA kernel for small MLP network (10x faster)
• Efficient data structure: multi-resolution hashing (10+ faster) 

Instant Neural Graphics Primitives [Müller et al.,]



Toward 3D-aware Generative Models
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3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]



3D Convolutional Layers

Photo credit: Shiva Verma

Easy to implement: 
- Replace 2D by 3D in your code

e.g., Conv2D -> Conv3D
ConvTranspose2d->ConvTranspose3d
MaxPool2d -> MaxPool3d



3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]



3D Generative Adversarial Networks

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]



How to add Color and Texture? 
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2D image

textureshape viewpoint

Learning 3D Disentanglement



texture code

2D image

texture network

shape code

shape network

3D shape

Real/fake shape Real/fake image

2.5D sketch

differentiable projection

viewpoint

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]

Learning 3D Disentanglement



samples from 2D GANs

our 3D, 2.5D, and 2D output

viewpoint

texture

3D disentanglement

shape

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]



3D

2D

3D

2D

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]



viewpoint

texture

Editing viewpoint, shape, and texture

shape

Example-based texture transfer

Image
Shape

Interpolation in the latent space

Shape

Texture

Both

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurIPS 2018]



Limitations: 
1. Voxel representation is expensive. 
2. Requires ground truth 3D data.
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Volumetric 3D

Eachgrid cell stores information (e.g.,occupancy, color) 

Verygeneralbut memory-intensive

256x256x256 -> 1024x1024x1024

Cannot even fit a single training data to GPU

Slide credit: Shubham Tulsiani



Improvements: 
1. Using implicit representation (network-based)
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Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Explicit function: 
𝑦 = 2𝑥. (y = f x )

Implicit function: 
2𝑦 − 4𝑥 = 0, 𝐹 𝑥, 𝑦 = 0

A set of zeros of a function of 
two variables. 



Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]



Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]



DeepSDF preserve details and render visually pleasing results compared to 
voxel-based methods.

Deep SDF



Improvements: 
1. Using implicit representation (network-based)
2. Learning from image collections
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HoloGAN

Representation: 3D feature representation 
Training: Adversarial loss + latent code reconstruction
Modulation: AdaIN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]



HoloGAN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

Limitations: 
- Do not synthesize geometric outputs (e.g., voxels, SDF). 
- No explicit viewpoint consistency. (same issue with Visual Object Networks)



NeRF + GANs
(Neural rendering + Generative Models)
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GRAF: Generative Radiance Fields

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]



GRAF: Generative Radiance Fields

• NeRF Generator is conditioned on both shape and appearance code.
• Patch-based Discriminator (full-image discriminator is too slow) 

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]



GRAF: Generative Radiance Fields

Multi-scale ray sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]



Training a 3D-Aware GAN

3D-Aware GAN Training Steps

1. Generate a representation of a scene

2. Render the scene from a random camera pose

3. Feed the image to a 2D discriminator

4. Backpropagate through the discriminator and differentiable rendering

DiscriminatorGeneratorNoise “Realness”

Feed the image to the discriminatorGenerate a scene Render a 2D Image

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan



𝜋-GAN 

Mapping network + AdaIN (FILM) + learnable positional encoding 

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]



Focal Length Latent InterpolationCamera Position

𝜋-GAN 

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan



𝜋-GAN 

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan



𝜋-GAN 

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
Slide credit: Eric Chan



Advanced Architectures: StyleNeRF

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]
Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], …

Baseline architecture Proposed architecture
rendering features via volumetric rendering + GANs-based upsampler



StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]



Advanced Architectures: EG3D (StyleNeRF+Triplane)

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]
Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], …

Rendering features 
via volumetric rendering

Generate final output
via image encoder

Tri-plane representation
for speed-up

F(x, y, x) -> F(x, y) + F(x, z) + F(y, z) features are useful for upsampling If the model is too slow, 
use GAN-based upsampler



EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]



Object Editing 
with Generative NeRFs
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position density

radianceview direction

Neural Radiance Fields Base Architecture

NeRF [Mildenhall et al., 2020]



density

radianceview direction

position
shape code

color code

GRAF [Schwarz et al., 2020]

Generative Neural Radiance Fields



position

shape code
density

radianceview direction

color code

+shared

instance

Editing Conditional Radiance Fields [Liu et al., 2021]

Generative Neural Radiance Fields (with shared geometry branch)



Editing Conditional Radiance Fields [Liu et al., 2021]



Which parameters 
do we change?



+position

shape code
view direction

density

radiance
color code

Editing Conditional Radiance Fields [Liu et al., 2021]



+position

shape code
view direction

density

radiance
color code

Updated for Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]



+position

shape code
view direction

density

radiance
color code

Updated for Color Editing

Updated for Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]



Color Editing

Input User Scribble Output Edited Views

Editing Conditional Radiance Fields [Liu et al., 2021]



Shape Editing

Input User Scribble Output Edited Views

Editing Conditional Radiance Fields [Liu et al., 2021]



Input User Scribble Output Edited Views

Color Editing

Editing Conditional Radiance Fields [Liu et al., 2021]



Input User Scribble Output Edited Views

Shape Editing

Editing Conditional Radiance Fields [Liu et al., 2021]



Text-based Editing 
with Generative NeRFs
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Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

a DSLR photo of a squirrel

wearing a purple hoodie

reading a book



Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Add noise and denoise using a pre-trained Stable Diffusion model
Step 3. Update NeRF parameters with the gradient (difference between added and predicted noises) 



Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]



Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Use InstructPix2Pix to produce output images
Step 3. Update NeRF parameters with generated result from Step 2 

InstructPix2pix: image-conditional diffusion model (https://www.timothybrooks.com/instruct-pix2pix/) 

https://www.timothybrooks.com/instruct-pix2pix/


Thank You!
https://learning-image-synthesis.github.io/


